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General measures for signal-noise separation in nonlinear dynamical systems
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We propose thef divergences from statistics and information theory~IT! as a set of separation indices
between signal and noise in stochastic nonlinear dynamical systems~SNDS!. The f divergences provide a
more informative alternative to the signal-to-noise ratio~SNR! and have the advantage of being applicable to
virtually any kind of stochastic system. Moreover,f divergences are intimately connected to various funda-
mental limits in IT. Using the properties off divergences, we show that the classical stochastic resonance~SR!
curve can be interpreted as the performance of a nonoptimal, or mismatched, detector applied to the output of
a SNDS. Indeed, for a prototype double-well system with forcing in the form of white Gaussian noise plus a
possible embedded signal, the whole information loss can be attributed to this mismatch; an optimal detection
procedure~for the signal! gives the same performance when based on the output as when based on the input of
the system. More generally, it follows that, when characterizing signal-noise separation~or system perfor-
mance! of SNDS in terms of criteria that do not correspond to IT limits, the choice of criterion can be crucial.
The indicated figure of merit will then not be universal and will be relevant only to some family of applica-
tions, such as the classical~narrow-band SNR! SR criterion, which is relevant for narrow-band post processing.
We illustrate the theory using simple SNDS excited by both wide- and narrow-band signals; however, we stress
that the results are applicable to a much larger class of signals and systems.
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I. INTRODUCTION

One of the most common indices of signal-to-noise se
ration for narrow-band signals in noise is the signal-to-no
ratio ~SNR! expressed in the~Fourier! spectral domain.
There are several reasons for this, one being the simplicit
definition and computation, another the fact that, for the
nonical case of a time-sinusoidal signal with random init
phase in Gaussian noise, the SNR immediately gives the
timal performance figures for several standard detect
estimation problems@1#. For example, the maximal achiev
able probability of detection of the signal can in this case,
any fixed false alarm probability, be written as a function
SNR ~Marcum’s Q function!. This intimate connection be
tween the SNR and fundamental performance bounds ca
attributed to the fact that the whole statistical structure of
process in this case is captured by the power spectrum~Fou-
rier transform of the autocovariance function of the proce!
@2#. However, if a process of this type is passed throug
nonlinear system, the output is no longer Gaussian and
spectrum of the output process will no longer represent
entire statistical structure of the process. Thus, for the ou
there is a choice between using as a signal-noise separ
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index ~SI! the SNR, which is simple to compute but whic
discards some statistical information, or turning to other
that retain the relevant information but might be more dif
cult to compute@3#. A similar tradeoff situation arises if one
considers, instead of the SNR, other output SIs which, l
the SNR, might be blind to certain parts of the statistic
structure of the process but still are easy to compute, suc
the deflections described below. Regardless of what typ
index of separation between signal and noise one choose
will always reflect~well! only one or a few aspects of th
total behavior of the observed process. This is true eve
one considers SIs that correspond to limits~bounds! in sta-
tistics and information theory~IT!, such as thef divergences
employed below. In other words, no SI can serve all p
poses and it is therefore imperative that one, in a given s
ation, clarify exactly what performance aspect or intend
use one is interested in. Examples of objectives inheren
many applications include detection/hypothesis testing, c
sification, estimation, and communication, but others o
more phenomenological nature, such as similarity~e.g., vari-
ous form of correlation! between in/output~signals! are also
common.

A field where questions of this type have recently elicit
considerable interest is stochastic resonance~SR! @4#. In SR,
the most commonly used SIs have traditionally been the o
put SNR and the spectral amplification~change in spectra
power!, both usually measured in the output power spectr
at the input signal frequency~or a harmonic thereof!. The
hallmark of SR has been, conventionally, the existence o
©2000 The American Physical Society07-1
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local maximum in the output SNR at some optimal~input!
noise strength~predicated on the system and signal char
teristics!. The prevalence of~narrow-band! SNR-type SIs can
perhaps best be explained by historical example, since
first applications of SR involved enhancement of a sinuso
signal by passage through a stochastic nonlinear dynam
system~SNDS!. In this setting it is natural to quantify per
formance in terms of a spectrum-based SI~focusing on the
presence of a component in the output with the same
quency as the exciting signal!. Not surprisingly, since the
inception of SR, investigations have been carried out to
termine whether or not the effect~or some variant of it!
could be used to facilitate detection@5# or information trans-
fer @6#. This led naturally to consideration of other SIs th
~also for more general distributions of signal and noise! are
more closely related to IT limits, such as probability of d
tection, false alarm, and error in detection settings@5,7,8#
and mutual information and channel capacity@6,9# in com-
munication settings. It has been shown that the channe
pacity of simple binary channels can be enhanced by ad
noise to the input. An intuitive way of explaining this is tha
unlike in the case of a linear channel, adding noise chan
thestructureof the equivalent channel~in a nontrivial way!.
The communication problem thus gets an additional dim
sion; that of optimizing not only the channel coding but a
the channel itself.

In the present work we generalize the formalism int
duced in@7# to SNDS with the focus on output-based SIs a
the problems of detection/hypothesis testing. We introd
thef divergences of Csisza´r- Ali-Silvey @10,11# as a canoni-
cal class of SIs and give a general formula for the compu
tion of f divergences between the probability measures
duced by the output of a SNDS over a time interval@0,T#.
Using this formula and basic properties off divergences, we
present a bound for SNR in terms of one member of t
family, thex2 divergence, and show why a large class of S
phenomena can be associated with the performance ofsub-
optimal detectors. The optimal detectors for these ca
would give a monotonically~with input noise strength! de-
creasing performance, but always at least as good as
suboptimal ones. This can be used to qualitatively expla
number of observations previously made in the literat
~such as various forms of resonances! for other SIs as well,
such as those related to Neyman-Pearson detection~see, e.g.,
@8#!. A main conclusion of this paper is therefore the follow
ing: from a ~mathematical! systems-theoretic perspectiv
~classical! SR can in many instances be explained simply
the result of a mismatching of the detector to the particu
shape the output distributions take for a certain input no
level, or, equivalently, as deficiencies in the SI used.~It
should be pointed out, though, that if a measurement n
floor is present, resonances can occur in the classical
setting also for more fundamental SIs, such asf divergences
@12#.! This insight facilitates the use of much more gene
characterizations of the stochastic resonance effect that
be introduced and explained without reference to any of
internal properties of the system, e.g., the matching of t
scales~and the concomitant connection to abona fidereso-
nance@13#! in a periodically rocked potential, even thoug
01110
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such explanations can offer insights into mechanism of
occurrence of the resonance in specific signal-SNDS com
nations. Generalized resonances of this type~in the sense of
local maximization of a SI! are known to occur also for othe
SIs and signals/systems and, since they can usually be
ized at a critical value of the noise background, they bea
resemblance to conventional SR@4#.

In the next section we define the type of SNDS and s
nals we will be working with, and we outline the scope of t
results to follow. The main material is presented in Sec.
where we address the problem of characterizing system
formance in terms of general SIs. First, in Sec. III A, w
review the concepts of likelihood ratio~LR! and sufficient
statistic, since these are central to the subsequent deve
ments.~The impatient reader can skip this section and p
ceed directly to Sec. III B.! The LR will play the role of an
information-preserving data reduction of an observable
lated to a SNDS, provided information preserving is inte
preted in a certain statistical sense which we clarify. Of p
ticular importance is the formula for the LR based
observations of the whole~state! trajectory of an SNDS rep-
resented by a stochastic differential equation~SDE!, which
we recall and discuss. Then, in Sec. III B, we introduce thef
divergences as a general class of SIs for SNDS that are
culated as functionals of LRs and describe a few of th
properties. The most important property off divergences
that we single out can be interpreted~loosely! as an analog of
the second law of thermodynamics for closed systems: de
ministic transformations of a noise-contaminated sig
should not be able to increase the~statistical! visibility of the
signal in the noise. We also give a concrete formula
computation off divergences generated by SNDS describ
by SDEs in terms of the representation of the SDE. T
formula is very important for the practical applications of t
theory, in particular for numerical studies. In Sec. III C w
then proceed to discuss some of the intimate relations
tweenf divergences and limits in statistical inference th
exist and, with this material at hand, we explain in Sec. III
why classical SR can be interpreted as the performance
suboptimal detector. In Sec. IV we illustrate the theoreti
developments in the preceding sections with numerical sim
lations, using a double-well-type SNDS for a number of d
ferent signals and SIs, and discuss the results in Sec. V

II. PRELIMINARIES

Many physical and biological dynamical systems oper
ing in noisy environments can be described by stocha
differential equations of the Itoˆ/Stratonovich type@14–16#, a
common example being the SNDSs of the double-well
tential type most often encountered in the SR literature.
will also consider here systems of this kind, and for simpl
ity we will restrict ourselves to the case of a scalar-st
variable and additive noise. It should be noted, however,
generalizations within the framework to more general d
namics~e.g., higher order systems! and colored and/or state
dependent noise can be carried out, several of which
straightforward.

We shall consider SNDSs that can be described by a~one-
7-2
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GENERAL MEASURES FOR SIGNAL-NOISE . . . PHYSICAL REVIEW E 63 011107
dimensional, Itoˆ! SDE of the form

dXt5 f ~Xt!dt1stdt1sdWt , tP@0,T#,

X05j, ~1!

where the functionf represents the negative gradient of
potential,st is a stochastic process representing a signal,
Wt is a standard Wiener process~independent ofj) scaled by
the noise strength parameters.0. The functionf, the pro-
cessst , and the initial variablej must satisfy some technica
conditions in order to suit the theory developed below. F
example, these quantities must fulfill conditions that ens
the existence and uniqueness of a solution to the SDE~strong
solutions will be of particular interest to us! @17#, conditions
for the measure transformations~infinite-dimensional prob-
ability density transformations! used below to work~one
such condition will be mentioned!, as well as certain othe
measurability/integrability conditions@15,16#. In all our ex-
amples, these~from an applications point of view not ver
strict! conditions are fulfilled. For later use we note that
the associated Fokker-Planck equation has a stationary
tion, or cyclostationary@18# in the case of a periodic signa
st , andj has the corresponding one-dimensional probabi
distribution, the solutionXt to Eq. ~1! will be a stationary,
respectively cyclostationary, Markov process@19#.

As a generic example of a potential, we will consider
soft double well for whichf in Eq. ~1! is given by

f ~x!52ax1b tanh~x!, a,b.0, ~2!

and as examples of signal processes we will employ a s
soid

st5A sin~v0t1w!, v0.0, ~3!

with constant amplitudeA>0 and phasewP@2p,p), as
well as a Gaussian pulse

st5A expS 2~ t2t0!2

2d2 D ~4!

centered att0P@0,T# with amplitudeA>0 and standard de
viation d.0. Although these signals are deterministic, the
is in principal no difficulty in applying the methodology o
this paper to random signals, e.g., the sinusoids with rand
phase or wide-band noise. An obstacle that arises, howe
is that certain quantities will then no longer be exactly e
pressable by simple formulas.

III. SEPARATION INDICES AND SNDS

One of the most basic objectives with measurements
physical system is to determine if it is in one of two possib
conditions ~or modes of operation!. In a statistical setting
~with noise present! this corresponds to determining whic
of two possible probability measures is active on the spac
all behaviors, which is an inference problem of thehypoth-
esis testingtype. If one of the two possible conditions corr
01110
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sponds to the presence of a certain type of signal on the in
~or output! of the system, and the other condition corr
sponds to the absence of it, the decision problem is o
referred to as adetectionproblem. For example, in the sys
tem ~1! with signal of the form~3! or ~4!, the canonical
detection problem is to determine ifA50 or A5A0, for
some fixedA0.0. Thus, the simplest form of hypothes
testing can be described as any procedure that aims at d
ing which of two possible probability measures~distribu-
tions! is the correct one for some observed data. The t
hypotheses about the distribution of data, or the condition
system is in, are usually denotedH0 and H1 respectively,
and probability density functions~PDFs! corresponding to
the probability measures are, accordingly, denotedp0 ,p1. It
would appear that a very basic candidate for an SI in t
setting is the performance of a given detector applied to
system’s output for the detection of a certain signal on
input. However, we argue that this is not generally a go
choice unless the detector isoptimal in some sense~or one is
interested only in one particular aspect of system per
mance!.

A. Observables, likelihood ratios, and sufficient statistics

The optimal decision strategy~detector! in all of the basic
decision problem formulations~e.g., Neyman-Pearson
Bayes, minimax! in statistics is based on one and the sa
central quantity, thelikelihood ratio @1#. The LR is the ratio
p1 /p0 and expresses how much more probable a given e
is underH1 relative to H0. Turning to the system~1!, we
assume the existence of an underlying abstract probab
spaceV, equipped with a probability measureP, on which
the initial variablej, the signal processst , and the Wiener
processWt in Eq. ~1! are all defined@20#. Unless otherwise
stated, the initial variablej is henceforth taken to be zero
We assume further that Eq.~1! has a strong solution for al
choices off andst that we consider. Since the trajectoriesXt
take values in the space of continuous functionsC(@0,T#),
we obtain also onC(@0,T#) probability measures induced b
Xt @21#, and these are different for different choices off ,st ,
and s. The measure induced byXt for f 50,st[0, ands
.0 is known as the~scaled! Wiener measure, denotedPs . It
is well known that~for fixed s.0! the various probability
measures onC(@0,T#) induced byXt for different choices of
f andst in Eq. ~1! have~under certain integrability condition
imposed onf and st) PDFs with respect toPs @22#. We
denote byH0 the hypothesis that the PDF in question isp0,
the one obtained forst[0, and byH1 the hypothesis that the
PDF is p1, the one obtained whenstÞ0, for fixed common
f ,s and some given signalst . In the simplest case, wher
f 50 andst is of the form~3! or ~4!, the processXt will be
Gaussian@23# under bothH0 and H1, and the LRL(X)
5p1(X)/p0(X) evaluated for the trajectoryXt is given by
the well known relation@1# ~the LR for deterministic signals
in Gaussian white noise!

ln L~X!5
1

s2 S E
0

T

stdXt2
1

2E0

T

st
2dtD . ~5!
7-3
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An important point to note about Eq.~5! is thatL(X) can
be recovered by a simple deterministic transformation o
the value of the stochastic functional

Si~X! ~6!

is known, whereSi is defined by

Si~Y!5E
0

T

stdYt , ~7!

for processesY such that the stochastic integral in Eq.~7! is
well defined. This leads us to the concept of sufficient sta
tic. A sufficient statisticfor the LR is a function which maps
data, here the trajectoriesXt , to some intermediate spac
such that the LR can be obtained from it by a subsequ
deterministic transformation@24#. Hence, a sufficient statisti
carries all the information needed for optimal decision m
ing regarding the condition of the system (H0 or H1!. There-
fore, as an observable to be used for decision making, the
~or a sufficient statistic for it! is as good as the whole trajec
tory Xt , thereby providing lossless coding of the trajecto
in this respect@25#. Thus, for inference, the LR deserves
be called amost compact representation of (all) the inform
tion in an observable. In the general case, with a nonze
f and possibly random signalst , the LR L(X)
5p1(X)/p0(X) takes the form@15#

L~X!5
L (1)~X!

L (0)~X!
, ~8!

whereL (k)(X) for k50,1 is given by

ln L (k)~X!5
1

s2 S E
0

T

f̂ t
(k)~X!dXt2

1

2E0

T

@ f̂ t
(k)~X!#2dtD .

~9!

For the system~1!, f̂ t
(0)(X)5 f (Xt) and f̂ t

(1)(X)5 f (Xt)

1 ŝt(X), whereŝt(X) is the conditional expectation~optimal
mean square estimate! of st given observations ofXt over
@0,t#, computed under the probability measureP. If st is
deterministic, we haveŝt(X)5st and the LR becomes par
ticularly easy to compute since we can dispense with
nonlinear filtering operation~in the statistical sense! @15#,
which is otherwise implicit in the computation ofŝt(X). By
dividing out terms in Eq.~8!, it is easy to see that a sufficien
statistic forL(X) in this case is given by

So~X!, ~10!

whereSo is defined by

So~Y!5E
0

T

stdYt2E
0

T

f ~Yt!stdt, ~11!

for processesY such that the integrals in Eq.~11! are well
defined. We note in passing that a sufficient condition for
representation~8!,~9! to be valid is Novikov’s condition: If
01110
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2E0

T

@ f ~Xt!1st#
2D G,`, ~12!

where the expectationE is with respect toP, thenL (1)(X) in
Eq. ~9! is well defined, as isL (0)(X) in Eq. ~9! if st is set to
0 in Eq. ~12! @26#.

B. f Divergences: Definition, properties and computation

A number of fundamental limits for statistical inferenc
can be expressed in terms of quantities known asf diver-
gences or Ali-Silvey distances@10,11#. Examples are the
Fisher information~Cramér-Rao bound! for small parameter
deviations, the bound in Stein’s lemma, the Chernoff bou
Wald’s inequalities, and the bound on minimal achieva
probability of error in Bayesian hypothesis testing@1,27,28#.
These bounds limit how well one can perform certain ta
based on measurements on a stochastic system, such a
detection of signals present on the input/output or estima
of parameters in the system. However, the bounds are
achievable~at least asymptotically!, i.e., there exist strategie
for inference that yield a performance that approaches
bound. Thus, for physical systems these bounds effectiv
tell us how much information~for various forms of infer-
ence! about the system different observables can prov
@29#, and thef divergences offer alternative~compact! rep-
resentations of it.

The f divergences have properties reminiscent of
rected distances between probability measures~PDFs! and
are defined as convex functionals of the LR in the followi
way. Let p0 ,p1 be two PDFs with respect to a referen
measurel on some spaceX ~considering Lebesgue measu
dl5dx on X5R makes the picture clear! and let f be a
~real-valued! continuous convex function on@0,̀ ). The f
divergencedf(p0 ,p1) betweenp0 and p1 is then given by
@10#

df~p0 ,p1!5E
X
fS p1

p0
D p0dl ~13!

~where we assume thatp1 is zero wherep0 is; however, in
our examplesp0 is positive-l almost everywhere!. In par-
ticular, forf(x)52 ln(x) we obtain the Kullback-Liebler di-
vergence, orinformation divergence dI @30#, also known as
the relative entropy; forf(x)5u(12a)x2au, where a
P@0,1#, we obtain the~weighted! Kolmogorov divergence,
or error divergenced«

(a) ; and forf(x)5(x21)2 we obtain
the x2 divergence dx2 @31#.

By definition ~13! the f divergences contain several a
tractive features as statistical measures of dissimilarity,
separation, betweenp0 ,p1. In particular, any given diver-
gencedf(p0 ,p1) is always maximized ifp0p150 ~almost
everywhere!, and converselydf(p0 ,p1) is minimized if p0
5p1 ~almost everywhere!. For example, taking
7-4
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d«
(a)~p0 ,p1!5E

X
U~12a!

p1

p0
2aUp0dl

5E
X
u~12a!p12ap0udl,

it is clear that the extreme cases yield the bounds

u122au<d«
(a)~p0 ,p1!<1.

Moreover, any transformation

h:X→Y

of the underlying spaceX, which induces a new referenc
measurer and corresponding PDFsq0 and q1 on Y, can
never increase divergences, since we have the data pro
ing inequality@32#

df~p0 ,p1!>df~q0 ,q1!. ~14!

Equality occurs if and only if the new LRq1 /q0, when
evaluated asq1@h(x)#/q0@h(x)# over X, is a sufficient sta-
tistic for the original LRp1(x)/p0(x), and this makes the LR
~and its sufficient statistics! the most ‘‘informative’’ function
of an observable for inference. For example, ifp0 ,p1 are the
PDFs with respect toPs on C(@0,T#) induced by the trajec-
toriesXt of the system~1! for st[0 andstÞ0, respectively,
h is the functional onC(@0,T#) defined by the statistic~10!,
and q1 ,q0 are the resulting two PDFs with respect to t
Lebesgue measure onR of the values of this functional, the
we trivially have equality in~14!.

For future reference, we note also that ifh is invertible
we will have equality in Eq.~14! and no loss of information
In particular, systems such as~1! are invertible in the follow-
ing sense and thus aredivergence preserving: each output
trajectoryXt in Eq. ~1! uniquely determines a trajectory de
fined byZt5Xt2*0

t f (Xt)dt, and the map so defined is in
jective @33#. Since we can~with probability one! identify Zt
with the input trajectory

Ft5E
0

t

stdt1sWt ~15!

~wherest can be zero in the case of no signal! it follows that
the input and output trajectories are in one-to-one corresp
dence, and the system is invertible. Thus, for anyf diver-
gence, the divergence between the two probability meas
on C(@0,T#) induced by the input forst[0 andstÞ0, re-
spectively,~for which the LR is given by Eqs.~8! and ~9!
with f 50) will coincide with that between the correspon
ing two measures onC(@0,T#) induced by the resulting out
put @for which the LR is given by Eqs.~8! and ~9!#.

Further, for systems such as~1!, a concrete representatio
for f divergences between probability measures
C(@0,T#) induced byXt has been given@34# in terms of the
LR in Eq. ~8!. Let p0 ,p1 be the densities with respect toPs

induced byXt whenst[0 andstÞ0, respectively. Then, the
f divergencedf(X) betweenp0 andp1 can be written
01110
ss-

n-

es

n

df~X!5E
C([0,T])

fS p1

p0
D p0dPs

5E
V

fS L (1)~X!

L (0)~X!
D L (0)~X!dP

5ES fS L (1)~X!

L (0)~X!
D L (0)~X!D , ~16!

whereL (0)(X),L (1)(X) are given by Eq.~9! and the expec-
tation E is with respect toP. The importance of the repre
sentation~16! lies in the fact that the divergence sough
which is somewhat abstractly defined by the first equal
admits a concrete representation in terms of the other
equalities@where the dependence on the SDE~1! is made
explicit#. In particular, the last two equalities provide us wi
a means to numerically compute the value of a divergence
Monte Carlo simulation.

C. Relations to bounds for inference

Perhaps the most fundamental connection betweenf di-
vergences and limits for inference is the one furnished by
relation between the Kolmogorov divergenced«

(a) and mini-
mal achievable probability of error in hypothesis testing. L
p0 andp1 be two generic probability densities~with respect
to a measurel as before! corresponding to two hypothese
H0 and H1, symbolizing for example the absence/presen
of a signalst in the system~1!, and assume that parametera
and its complementary value 12a in the definition of
d«

(a)(p0 ,p1) represent twoa priori probabilities forH0 and
H1, respectively, to occur~the standard Bayesian setting
statistics!. Then, it is straightforward to show that@11#

P̃e
(a)~p0 ,p1!5 1

2 @12d«
(a)~p0 ,p1!#,

whereP̃e
(a)(p0 ,p1) is theminimal achievable probability of

error in hypothesis testing betweenH0 andH1 ~for param-
etersa and 12a) @35#. Thus, we see that an observable f
which d«

(a)(p0 ,p1) is large provides lowP̃e
(a)(p0 ,p1) and

therefore much information for inference purposes.
Optimal detection, such as minimizing the probability

error in the sense just described, requires full knowledge
the probability distributions involved, i.e., the LR, and th
can be difficult to obtain in many applications. Therefore,
alternative type of SI known as thedeflection ratio~DR! is
sometimes used. The DR depends only on the expectat
and variances of an observable at hand and is most c
monly defined as follows. Leth be some~possibly! complex-
valued observable of the data such thatE1(h) and V0(h)
both exist, whereE1(h) is the expectation ofh underH1 and
V0(h) is the variance ofh underH0. The DRD(h) of h is
then defined as@1,36#

D~h!5
uE1~h!2E0~h!u2

V0~h!
, ~17!
7-5
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whereE0(h) is the expectation ofh underH0. The DR is
often viewed as a generalization of the concept of SN
When used for detection, the decision thatH1 is true is made
if h.g, whereg is some threshold; otherwiseH0 is chosen
@assumingh is real andE1(h).E0(h); in general,h is com-
pared with some decision boundary#. By writing out D(h) in
terms of the integrals with respect top0 ,p1 and applying the
Cauchy-Bunyakovsky-Schwarz inequality, one obtains
bounds

0<D~h!<dx2~p0 ,p1!, ~18!

with equality on the left if and only if E0$@h
2E0(h)#(p1 /p021)%50 and equality to the right if and
only if C1@h2E0(h)#5C2(p1 /p021) with p0-probability
one, for two~complex! constantsC1 ,C2 not both zero. Thus
in particular we have equality to the right in Eq.~18! if h
equals the LRp1 /p0.

D. Relations to SNR and detector optimality

Given the properties off divergences, it would be desir
able to compare and relate these to those of the SNR,
this is indeed possible. It has been shown@34# that the SNR
used in SR can, under some mild technical conditions,
expressed as a limit~as the observation timeT goes to infin-
ity! of deflections of Fourier transforms computed from t
trajectoriesXt of the system~1!. Let p0 and p1 be the den-
sities with respect toPs induced onC(@0,T#) by the trajec-
toriesXt whenst[0; hypothesisH0, andstÞ0; hypothesis
H1, respectively, as in Sec. III A. Further, letE0 and E1
denote the expectations computed underH0 andH1, respec-
tively, and assume that the system has a stationary solu
Xt underH0, a cyclostationary solution underH1, and that
E0(Xt

2),`,E1(Xt
2),`. For the case of deterministic~peri-

odic! signals as in Eq.~3! we can then define the SNRSp as

Sp5
ap

g0~v0!
, ~19!

where g0 is the power spectral density of the Lorentzi
processXt obtained underH0 andap5uc1u2/2p, wherec1 is
the first coefficient in the Fourier expansion(nPZcneiv0nt of
the periodic functionE1(Xt) ~this definition makes the mos
sense for weak signals, i.e.,A!1). Then, under some inte
grability conditions on the covariance and power spec
density functions ofXt underH0, we have@34#

lim
T→`

D@ I T
1/2~v0!#

T
5Sp , ~20!

where I T
1/2 is a square root of the continuous-time pe

odogram defined as

I T
1/2~v!5

1

A2pT
E

0

T

Xte
2 ivtdt, vPR. ~21!

As an aside, we note that a similar relation holds for the c
of a random phasew, for weak signals (A!1) @34#. For
01110
.

e
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future use we note also that the SNR~19! is invariant under
transformation by a linear time-invariant system~with finite
nonzero Fourier transform nearv0).

The bounds~18! provide us with a straightforward way o
assessing the nonoptimality of a given detector~i.e., statistic
h). For example,I T

1/2(v0) can be interpreted as a linear fun
tional onC(@0,T#) ~where the trajectoriesXt take their val-
ues! so we can apply the bounds in Eq.~18! to the statistic
h5I T

1/2(v0). The ratioNTP@0,1# defined by

NT5
dx2~p0 ,p1!2D~ I T

1/2~v0!!

dx2~p0 ,p1!
~22!

@where the PDFsp0 ,p1 are the ones induced onC(@0,T#) by
Xt# will then be an index of nonoptimality@37# of the Fourier
statistic I T

1/2(v0) as a detection statistic. This can~for large
T) be expressed in terms of SNR if we divide both the n
merator and denominator of the right hand side of Eq.~22!
by T and use Eq.~20! to write D@ I T

1/2(v0)#/T5Sp1o(1)
@38#. Thus, it follows that for signals and systems as in S
II the SNR is in generalnot to be equated with optima
detection performancebut, rather, when compared to optim
detection performance, gives an index of the nonoptima
@39# for detection ofst based on the trajectoryXt using the
statistic~21! @40#.

IV. SIMULATIONS

We shall now illustrate the above findings with some n
merical simulations involving the system~1!, for determinis-
tic signalst in the form of a sinusoid as in Eq.~3! and a pulse
as in Eq.~4!. In all the simulations the parameters used
the potential represented byf in Eqs. ~1!,~2! are a553.5,b
5216 and the SDE~1! is solved using the Euler-Maruyam
scheme. The~integrated! input Ft to the system~1! is defined
as in Eq.~15!, wherest[0 underH0 and is given by either
Eq. ~3! or Eq. ~4! underH1. The output, finally, is given by
Xt in Eq. ~1!. We compute thef divergences for the statis
tics ~7! and ~11!, and compare with the results compute
from Eq.~16!, all evaluated both for the~integrated! input Ft
and outputXt . Note that, formally,Xt5Ft for f 50 so that,
e.g., Si(F) is given by Si(X) in ~7! if f is set to 0 and
analogously for the statistic in Eq.~11! and a divergence a
in Eq. ~16!.

Two distinctly different techniques were used to compu
the variousf divergences depending on whether the div
gence in question was one between PDFs onR or between
PDFs onC(@0,T#). For PDFs onR, as encountered whe
evaluating divergences for the statisti
Si(F),Si(X),So(F),So(X), the divergences were calculate
using the basic formula~13!, where the PDFsp0 ,p1 were
estimated using a simple histogram approach. For insta
when computing the divergences for the statisticSo(X) in
Eq. ~10! the SDE ~1! was solved using bothst50 and st
Þ0 ~with the nonzero signal chosen according to the c
under consideration! and two large sets of solution trajecto
riesXt were created, representing theH0 andH1 hypotheses
on C(@0,T#), respectively. These two sets of trajectori
7-6
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were then used to produce histogram estimates of the P
p0 ,p1 for So(X) underH0 and H1, from which the diver-
gences for this statistic were subsequently computed stra
forwardly using Eq. ~13!. The procedure employed fo
Si(F),Si(X),So(F) was analogous, using the observatio
above about the relations betweenXt and Ft . On the other
hand, for PDFs onC(@0,T#), as encountered when evalua
ing the divergencesdf(F),df(X) in Eq. ~16!, an entirely
different approach was used based on directly estimating
integral on the right of the second equality in Eq.~16!. It
utilizes the fact that if a processXt which is a Wiener proces
under the basic measureP is inserted into formula~16! in all
places whereXt appears, then standard averaging will pr
duce the expectation~integral! on the right in Eq.~16! @34#.
However, in order to achieve numerical convergence
efficiency, a number of numerical devices were needed,

FIG. 1. f divergences~Kolmogorov, top row; information,
middle row; x2, bottom row! for system~1! with the sinusoidal
signal~underH1) plotted as functions of the noise intensitys2 for
the input~left column! and output~right column!, all in dimension-
less units. The divergences are computed based on the values
statistic in Eq. ~7! ~dash dotted lines!, the statistic in Eq.~11!
~dashed lines!, and formula~16! ~solid lines!. For the input, it can
be seen that the statisticSi(F) produces the same divergences as
ones obtained fromdf(F), which is to be expected sinceSi(F) is
sufficient for the LR for the input process. The statisticSo(F) on
the other hand~with values at the bottom of the plots in the le
column!, which is not sufficient for the input, produces values
below the corresponding optimal ones obtained fromSi(F) and
df(F) ~cf. Fig. 2!. For the output we analogously see that the s
tistic So(X), which is sufficient for the LR for output, produces th
same values asdf(X), whereas the statisticSi(X) produces far
lower values~falling on the abscissa in the plots in the right co
umn!. Moreover, due to the invertibility thedf(F) and df(X)
curves coincide.
01110
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these will be described elsewhere. When computing defl
tion ratios, the expectations and variances in Eq.~17! were
computed directly by standard averaging, without first co
puting PDFs forI T

1/2(v0).

A. Harmonic signal

Our first example will illustrate the results of Secs. III B
III D for the case of sinusoidal signalst as in Eq.~3! under
H1. The parameters forst are A51.3, v051.2252, w50
~cf. @41#!. The length of the time interval isT5153.8~which
corresponds to 30 periods of the sinusoid!, the time step in
the Euler-Maruyama scheme is 0.01, and a total of 10
trajectories has been used in the averaging. The value o
a priori probability in the Kolmogorov divergence isa
50.6.

In Fig. 1 the Kolmogorov, information andx2 diver-
gences are computed for the input and output processes
spectively, using the statistic in Eq.~7!, the statistic in Eq.
~11!, and formula~16!. For example, the upper left panel i
Fig. 1 showsd«

(a)$p0@Si(F)#,p1@Si(F)#% ~dash-dotted line!,
d«

(a)$p0@So(F)#,p1@So(F)#% ~dashed line!, and d«
(a)(F)

~solid line!, wherepk(S), k50,1, is the PDF~onR) obtained
for statisticS@as in Eq.~7! or ~11!# under hypothesisHk ; for
the upper right panel, replaceF with X.

For the input, we see that the divergences for the stati
Si(F), which is a sufficient statistic for the input LR and fo
which the divergences are between PDFs onR ~whereSi(F)
takes its values!, agree with the divergencesdf(F) obtained
from formula ~16!, which gives divergences between PD
on C(@0,T#). This is in accordance with what we know abo
equality in the data processing inequality~14!, since here we
can interpretp0 ,p1 in Eq. ~14! as the PDFs onC(@0,T#)
induced by the inputFt underH0 andH1, respectively, and
h as the functional onC(@0,T#) defined bySi(F), which
trivially yields equality in Eq.~14!, sinceSi(F) is a sufficient
statistic forFt . For the statisticSo(F), which is not suffi-
cient for the input, we obtain curves displaying a barely v

the

e

-

FIG. 2. f divergences~Kolmogorov, left; information, middle;
x2, right! for the input to the system~1!, based on the statistic
So(F), which is not sufficient for the input with sinusoidal sign
~underH1), plotted as functions of the noise intensitys2. ~Curves
are an enlargement of the dashed curves in the left column in
1.! These curves show a clear resonance.
7-7
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ible resonant behavior with values far below the correspo
ing ones for the divergencesdf(F). The behavior of the
So(F) curves is more clearly seen when displayed separa
as in Fig. 2. They illustrate that a nonoptimal detection s
tistic can give rise to performance curves that display typ
SR behavior, and that the asymptotic behavior for sm
noise can be markedly different from the correspond
curves obtained for an optimal statistic.

Finally we note that all divergencesdf(F) for the input
decay monotonically with the input noise strengths, which
is consistent with intuition. For the output we make ana
gous observations. Here the statisticSo(X) is sufficient for
the LR and produces the same divergences as the d
gencesdf(X) obtained from formula~16!, whereas the sta
tistic Si(X) produces far lower values. This is in accordan
with the theory since if we interpretp0 ,p1 in Eq. ~14! as
output-induced PDFs onC(@0,T#) and h as the functional
defining the statisticSo(X), we have equality in Eq.~14!.
Moreover, the divergencesdf(X) computed using formula
~16! coincide with the corresponding divergencesdf(F) for
the input, since the system is invertible. The statisticSi(X)
on the other hand, which is not sufficient for the output L
produces curves that are~far! below those obtained from
statistic So(X) and the divergencesdf(X) from formula
~16!.

The monotonic decay of the divergence curves compu
from formula~16! differs markedly from the behavior of th
deflection of the Fourier statisticD@ I T

1/2(v0)# based on the
output, as defined in Sec. III D, which is shown in Fig. 3.

FIG. 3. Deflection ratioD@ I T
1/2(v0)# for the output to the system

~1! with the sinusoidal signal~underH1) plotted as a function of
noise intensitys2 ~dimensionless units!. The same definitions and
parameters as in Fig. 1 have been used. A clear resonance c
observed.
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Here we see typical SR behavior with a clear resona
near s25300. However, in view of Eq.~20!, this type of
behavior is to be expected. It is also worth noting that
values, in particular after normalization with 1/T, are much
lower than those for the outputx2 divergence in Fig. 1. An-
other interesting observation about the curve can also
made which is not related to the resonance peak but to
dip immediately preceding it. Given the discussion in t
preceding section about nonoptimality of the detection sta
tic I T

1/2(v0), it is tempting to believe that the dip correspon
to maximal nonoptimality, in the sense of local maximizati
of the nonoptimality indexNT defined in Eq.~22!, for the
statisticI T

1/2(v0).
In Fig. 4 a plot ofNT for the output is shown and indee

a peak appears at arounds2580, which matches the dip in
Fig. 3 very well. In fact, the peak in theNT curve represents
a global maximum, which means that the Fourier statis
~21! is maximally poor as a~threshold! detection statistic at
this value of s. Consequently, the peak in the deflectio
curve should therefore more aptly be thought of as repres
ing a recovery behavior, where some of the performance
in the region of values where the dip occurred is regain
@42#.

B. Pulse signal

To illustrate that thef divergences are applicable also
nonperiodic forcing, we have computed the divergences
the same setup as in the example in Sec. IV A but with
Gaussian pulse signal as in Eq.~4! underH1. The pulse is
centered att05T/2, and has a standard deviation ofd5T/4
and an amplitudeA55. The length of the time interval is

be

FIG. 4. NonoptimalityNT for the output as a function of nois
intensity s2 ~dimensionless units!. The peak in the curve agree
well with the dip in the deflection curve in Fig. 3.
7-8
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T510, the time step in the Euler-Maruyama scheme
0.005, and a total of 20 000 trajectories has been used in
averaging. The value of thea priori probability in the Kol-
mogorov divergence isa50.6.

In Fig. 5 the divergences based on the input and ou
are shown. On the whole, the behavior is similar to t
displayed in the example with sinusoidal signal; sufficie
statistics always produce the same values as formula~16!,
and the latter yields the same values for the input as for
output. For the output, the nonsufficient statistic does
produce much lower values than the optimal ones, thoug

V. CONCLUDING REMARKS

In view of what has been shown in the preceding sectio
it is clear that thef divergences represent a very gene
class of SIs that are applicable to almost any type of stoc
tic system, in particular systems like~1! with a general~pos-

FIG. 5. f divergences~Kolmogorov, top row; information,
middle row; x2, bottom row! for the system~1! with pulse signal
~under H1) plotted as functions of the noise intensitys2 for the
input ~left column! and output~right column!, all in dimensionless
units. The divergences are computed based on the values o
statistic~7! ~dash dotted lines!, the statistic~11! ~dashed lines!, and
the formula ~16! ~solid lines!. For the input, the statisticSi(F),
which is sufficient for the LR, produces the same divergences as
ones obtained fromdf(F). The statisticSo(F) on the other hand
~with values at the bottom of the plots!, which is not sufficient for
the input, produces values far below the corresponding optimal o
obtained fromSi(F) and df(F). Analogously, for the output the
statisticSo(X), which is sufficient for the LR, produces the sam
values asdf(X), whereas the statisticSi(X) produces lower values
Here, the difference between the optimal and suboptimal value
not so great, however. Also, thedf(F) curves coincide with the
df(X) curves due to the invertibility.
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sibly random, wide-band! signal. If we make a loose analog
with ~thermodynamical! entropy in closed systems and inte
pret the similarity expressed byf divergences as a figure o
‘‘mixed-up-ness’’ or overlap between two PDFs, the da
processing inequality~14! shows thatf divergences also be
have consistently with intuition: deterministic transform
tions ~which do not involve any auxiliary random variable
and thus are closed! cannot increase the separation~i.e., de-
crease the mixed-up-ness! between two PDFs. In fact, th
data processing property~14! can be taken as a natural~axi-
omatic! requirement of an SI between probability measu
which guarantees that the output-input separation gain
always be between 0 and 1@43#. Further, as mentioned in
Sec. III B, systems that represent invertible transformati
preserve divergences, and therefore the separation betw
noise and signal is~in this sense! the same whether it is
measured on the input or output of the system. This also
be taken as a natural requirement of a separation index
an invertible system, all the information about the signa
still present after passage through the system, it is just
resented differently than at the input, and a good SI sho
be invariant under different~equivalent! representations o
data.

The behavior off divergences is thus markedly differen
from other SIs that do not have the data processing prop
~14! ~with equality for invertible transformations!. In particu-
lar, for a time-sinusoidal input such as Eq.~3! embedded in a
weakly stationary background~noise! process, the SNR~19!
has only partially this property, since it is invariant und
~locally in the spectral domain, nearv0) invertible linear
filtering operations but not under the relatively simple no
linear invertible transformations that correspond to a pass
through a system such as~1!. This lack of invariance of the
SNR is a consequence of the fact that the statistic~21! im-
plicit in the definition of the SNR is blind to certain parts o
the statistical information about the process. Another way
quantifying the blindness to statistical information inhere
in the statistic~21! emerges naturally when considering i
use in detection. When used for detection on the output~to
detect a time-sinusoidal signal present on the input! of the
system~1! the statistic~21! always renders the detector su
optimal ~no matter how the statistic is used; it is not suf
cient for the LR!. More generally, any SI used to describ
separation between signal present and absent on the o
which is not a functional of the LR will necessarily be blin
to certain parts of the statistical information and will suff
from similar inadequacies~and may or may not produc
resonances as, e.g., in Fig. 2!. Still, SNR and similar SIs can
be very relevant in those instances where onlyone specific
aspectof system behavior is important, such as in narro
band processing where the signal power at a single freque
is the main concern.
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@22# A thorough treatment of the associated theory of such dens
can be found in Chapter 7 of Ref.@15#.

@23# Also for f linear,Xt will be Gaussian.
@24# Compare, e.g., Ref.@30#, Sec. 2.4.
@25# Indeed, it represents a tremendous coding, since the trajec

lives in an infinite-dimensional space, whereas the LR ta
values on the real line. Note, however, that we use the w
coding a little bit loosely here, and not in its strict informatio
theoretic sense.

@26# See, e.g., Sec. 3.5.D of Ref.@16# and Sec. 6.2 of Ref.@15#,
where further conditions guaranteeing that~12! is fulfilled can
also be found.

@27# T.M. Cover and J.A. Thomas,Elements of Information Theory
~Wiley, New York, 1991!.

@28# D. Siegmund, Sequential Analysis~Springer-Verlag, New
York, 1985!.

@29# Here and in the following the word ‘‘information’’ is to be
interpreted informally and not in its most commo
information-theoretic sense~which applies to communication!.
It is noteworthy, however, that Kullback@30# who mostly con-
sidered inference, quantified the word ‘‘information’’ by th
value of the information divergence.

@30# S. Kullback, Information Theory and Statistics~Dover, New
York, 1997!.

@31# See, e.g.,@36# for relations between these divergences.
@32# This terminology is borrowed from information theory, whe

a related inequality with the same name holds for the mut
information; see@27#.

@33# For the injectivity to hold, it is sufficient thatf satisfy a global
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Lipschitz condition, but this is generally assumed in order
guarantee a strong solution to the SDE~1!.

@34# J. Rung and J.W.C. Robinson, inSTOCHAOS: Stochastic an
Chaotic Dynamics in the Lakes, edited by D.S. Broomhead
E.A. Luchinskaya, P.V.E. McClintock, and T. Mullin~Ameri-
can Institute of Physics, Melville, NY, 2000!.

@35# An error is said to occur if, after observation of data, such
the trajectoryXt of ~1!, one infers thatH0 is correct when in
fact H1 is, or vice versa.

@36# M. Basseville, Signal Proc.18, 349 ~1989!.
@37# If we recall the conditions for equality in Eq.~18!, we see that

the indexNT in Eq. ~22! expresses nonalignment, or orthog
nality, betweenh2E0(h) andp1 /p021.

@38# Strictly speaking, the limit~20! is established under differen
conditions than for the divergence in~22! since we have as
sumedj50 for the latter. However, under mild conditions on
can show that the limit in~20! will exist and remain the same
even if one instead starts~1! with j50 so that the solution to
~1! will be merely asymptotically cyclostationary underH1.

@39# Frequently, the quantitydx2(p0 ,p1)/T tends to infinity asT
grows, with the consequence that the nonoptimalityNT will
tend to 1. In particular, forf 50 it can be shown tha
dx2(p0 ,p1) typically grows exponentially withT @e.g., for the
signal ~3!#, which implies that the two probability densitie
p0 ,p1 on C(@0,T#) eventually separate completely so that p
fect ~zero error! detection becomes possible, yielding so-call
01110
s

-

~asymptotically! singular detection@1#.
@40# In the special case of linearf and sinusoidal signal of the form

~3!, a glance at Eqs.~10!,~11! reveals that forw50 and T
5kp/v0 (k being a positive integer! the real and imaginary
parts ofI T

1/2(v0) together form a sufficient statistic for the LR
@In the particular case wheref 50 and the integral in definition
~21! of I T

1/2(v) is replaced by*0
Te2 ivtdXt the modified statistic

I T
1/2(v0) will always be sufficient for the LR in this case, for a

w,T.# On the other hand, in the general case wheref is non-
linear, it is clear from Eqs.~10!,~11! that the Fourier statistic
I T

1/2(v0) ~and its modification! is no longer a sufficient statistic
for the LR ~8! ~for any values ofw,T).

@41# M.E. Inchiosa and A.R. Bulsara, Phys. Rev. E52, 327 ~1995!.
@42# For the system~1! with a potential such as that correspondin

to Eq.~2!, which both locally near the two local minima of th
potential and for largeuxu is parabolic, there are, moreove
two asymptotes that are to be expected in the deflection cur
provided the signal is small andT is large: when the input
noise strengths is small the system acts essentially linear
and hence will preserve not only divergences but also SN
and it will also appear linear for very larges, and the same
preservation of both divergences and SNR will occur then a

@43# It can be shown that functions of the LR that have t
data processing property~14! must~under some technical con
ditions, cf., e.g.,@10#! be of the form ~13!, with a strictly
convexf.
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